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Abstract

The enormous growth in data traffic in communication networks, combined with
increasingly intricate network designs, presents formidable challenges for efficient resource
allocation and optimization. In recent years, Artificial Intelligence (Al) has emerged as a
transformative force in the telecommunication industry, revolutionizing various aspects of
network management and performance enhancement. This paper provides an in-depth
analysis of Al’s potential applications in communication networks, focusing on areas such as
resource allocation, network optimization, fault detection, security improvement, customer
experience enhancement, predictive maintenance, and fraud detection. Several Al
approaches, including evolutionary algorithms, deep learning, reinforcement learning, and
machine learning, are explored in their application to communication network
management. Additionally, the study discusses the current status of research, challenges
faced, and potential avenues for leveraging Al to enhance network performance, reliability,
and security. Through real-world examples and emerging trends, this paper highlights Al’s
role in shaping the future of telecommunications by enabling faster, more efficient, and
smarter communication networks.



1.0 Introduction

Al has been one of the most transformative technologies of the past few decades,
revolutionizing industries such as healthcare and finance. Its impact on communications and
the information society has been particularly significant. As communication is deeply
intertwined with information exchange, it forms a key element of modern society [1]. The
telecommunications industry plays a critical role in connecting people, businesses, and
devices across the globe. As technology continues to advance at an unprecedented pace,
the integration of Artificial Intelligence (Al) in telecommunications has emerged as a
transformative force.

The telecom industry is undergoing significant transformation due to technological
advancements, including increased data volume, enhanced computational power, and
sophisticated computing architectures. While sectors like retail, finance, healthcare, and
transportation have rapidly adopted Al to redefine their operations, telecom operators have
been relatively slower to embrace these changes. However, this is changing rapidly. Telecom
operators are now recognizing Al's immense potential and are beginning to harness its
transformative capabilities. Al is revolutionizing the way telecom operators deliver services,
enhance customer experience, optimize network management, and drive operational
efficiencies. By leveraging Al, telecom companies can unlock new possibilities, revolutionize
operations, and provide customers with personalized experiences.

Al is being used to improve network performance, automate customer service tasks, and
personalize user experiences. As a result, telecommunications companies can deliver better
services to their customers and stay ahead of the competition. Al’'s remarkable capability to
process vast amounts of data, recognize patterns, and autonomously make intelligent
decisions makes it a powerful tool for transforming communication networks. Al-powered
solutions can optimize network operations and resource allocation, predict and mitigate
security threats, and offer numerous benefits to enhance the performance and resilience of
modern communication infrastructures.

The convergence of 5G (Fifth Generation) networks, the Internet of Things (loT), and the
growing volume of Big Data has propelled Communications Service Providers (CSPs) to focus
on Al. Advanced algorithms, Machine Learning (ML), and Deep Neural Networks (DNNs)
enable Al technologies to analyze vast datasets, identify patterns, and make intelligent
predictions. This report provides an overview of the use of Al in telecommunications,
highlighting its impact, applications, challenges, and future directions in shaping the next
generation of communication networks [2].



2.0 Overview of Al

Al has been defined differently over time. Modern Al is the intelligence demonstrated by
machines, distinct from the natural intelligence displayed by humans or animals. Al involves
studying intelligent agents—systems that perceive their environment and take action to
achieve their goals [3].

Recent advancements in Al have driven innovations in fields such as natural language
processing, computer vision, robotics, gaming, and decision-making systems. The ongoing
evolution of Al has the potential to enhance human capabilities, revolutionize industries,
and tackle complex challenges across various domains, including healthcare, scientific
research, transportation, and sustainable energy solutions.

Integrating Al methods into communication networks can address complex challenges and
capitalize on new opportunities. The combination of traditional Al and Generative Al (GenAl)
will offer the industry a unique opportunity to rethink and reinvent traditional business and
operating models.

Key Al methodologies for optimizing network operations and performance include:

Artificial Intelligence

Machine Learning

Neural Network

Deep Learning

Figure 1 The relationship between Al, Machine Learning, Neural Network, Deep Learning, and Generative Al



Artificial Intelligence (AI):

Artificial Intelligence (Al) refers to the development of computer systems of performing
tasks that require human intelligence. Al aids, in processing amounts of data identifying
patterns and making decisions based on the collected information. This can be achieved
through techniques like Machine Learning, Natural Language Processing, Computer
Vision and Robotics. Al encompasses a range of abilities including learning, reasoning,
perception, problem solving, data analysis and language comprehension. The ultimate goal
of Al is to create machines that can emulate capabilities and carry out diverse tasks, with
enhanced efficiency and precision.

Machine Learning (ML):

Machine learning is a branch of artificial intelligence that enables algorithms to uncover
hidden patterns within datasets. It allows them to predict new, similar data without explicit
programming for each task. Machine learning finds applications in diverse fields such as
image and speech recognition, natural language processing, recommendation systems,
fraud detection, portfolio optimization, and automating tasks. Machine learning’s impact
extends to autonomous vehicles, drones, and robots, enhancing their adaptability in
dynamic environments. In communication networks, ML techniques are used for tasks such
as traffic prediction, anomaly detection, and resource optimization. ML models, trained on
historical network data, can forecast future traffic demands, enabling proactive network
management and capacity planning. Furthermore, ML-based anomaly detection algorithms
can identify abnormal network behavior, indicating security breaches or performance
degradation, thus facilitating timely mitigation actions.

Neural Network:

A neural network is a machine learning program, or model, that makes decisions in a
manner similar to the human brain, by using processes that mimic the way biological
neurons work together to identify phenomena, weigh options and arrive at conclusions.
Every neural network consists of layers of nodes, or artificial neurons—an input layer, one
or more hidden layers, and an output layer. Each node connects to others, and has its own
associated weight and threshold. If the output of any individual node is above the specified
threshold value, that node is activated, sending data to the next layer of the network.
Otherwise, no data is passed along to the next layer of the network. Neural networks rely on
training data to learn and improve their accuracy over time. Once they are fine-tuned for
accuracy, they are powerful tools in computer science and artificial intelligence, allowing us
to classify and cluster data at a high velocity. Tasks in speech recognition or image
recognition can take minutes versus hours when compared to the manual identification by
human experts. One of the best-known examples of a neural network is Google’s search
algorithm. Neural networks are sometimes called artificial neural networks (ANNSs)
or simulated neural networks (SNNs). They are a subset of machine learning, and at the
heart of deep learning models.

Deep Learning (DL):

Deep learning is a subset of machine learning that utilizes multilayered neural networks,
known as deep neural networks, to simulate the complex decision-making processes of the
human brain. Unlike traditional machine learning models that use simple neural networks
with one or two layers, deep learning models employ three or more layers, often hundreds
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or thousands, to train the models. It is used in communication networks for traffic
classification, QoS (Quality of Service)/QoE (Quality of Experience) enhancement, and
network security. Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) effectively analyze network traffic patterns and distinguish between different
application types. DL models support dynamic QoS provisioning and adaptive network
management based on real-time traffic attributes.

Generative Al:

Generative Al, often referred to as GenAl, is a subset of artificial intelligence that can create
original content such as text, images, videos, audio, or software code in response to user
prompts. This technology relies on sophisticated machine learning models, particularly deep
learning models, which simulate the learning and decision-making processes of the human
brain.



3.0 Alin Communication Networks
Integrating Al in communication networks presents trans-formative opportunities for
enhancing network efficiency, reliability, and user experience. By leveraging Al technologies,
communication networks can be optimized to handle increasing data traffic, provide robust
security measures, and offer personalized services. Below are key areas where Al can
significantly impact communication networks [4]:

3.1. Al in Satellite Communication

Satellite communication holds the potential to provide continuous service in under-served
or remote areas, offering global connectivity, service ubiquity, and scalability. However, to
fully realize these advantages, significant challenges in resource management, network
control, security, spectrum utilization, and energy efficiency must be addressed, as satellite
networks face more stringent constraints than terrestrial systems. Artificial Intelligence (Al)
— encompassing machine learning, deep learning, and reinforcement learning — has shown
great promise in addressing these challenges. Al has already proven its value across various
fields, including wireless communication, and its application to satellite networks reveals
significant potential.

This section offers an extensive overview of Al and its diverse sub-fields, highlighting state-
of-the-art algorithms tailored to meet the unique demands of satellite communications.
Among the various Al applications in this fields as depicted in below Fig 2, notable areas
include beam-hopping, anti-jamming, network traffic forecasting, handoff optimization and
carrier signal detection etc.

Beam
hopping

Anti
jamming

Energy
managing

Al for satellite Channel

communication l modeling

Telemetry
mining

Behaviour
modeling

Remote
sensing

nterference
managing

onospheri
scintillation
detecting

Figure 2 Applications of artificial intelligence for different satellite communication aspects



3.1.1 Al-Based Solutions for Beam Hopping

Beam Hopping (BH) has emerged as a promising technique to manage the dynamic and non-
uniform traffic demand across different satellite coverage areas. BH involves dynamically
activating a limited number of beams at any given time to meet varying traffic needs as
shown in fig 3. Traditional methods of implementing BH have relied on optimization
algorithms, but these approaches face several limitations such as high complexity of
optimization, long computation times, limited adaptability to traffic fluctuations especially
as the complexity of satellite networks grows.

BH illumination
pattern configuration

Resource || <
manager

Figure 3 Simplified architecture of beam hopping(BH)

Al and ML are revolutionizing the way beam hopping (BH) is managed in satellite
communication systems. Traditionally viewed as a complex optimization challenge, BH has
benefited immensely from Al-based approaches, particularly through techniques like Deep
Reinforcement Learning (DRL), hybrid learning, and multi-objective deep reinforcement
learning. Al-based approaches have shown significant improvements over classical methods.
DRL enables the satellite to dynamically adapt to traffic variations by learning optimal beam
illumination patterns based on time-varying demands. Studies have demonstrated that DRL
can reduce transmission delays by up to 50% and increase throughput by over 10%
compared to traditional optimization algorithms [5], [6], [7], [8].

3.1.2 Al-Based Solutions for Anti Jamming

Traditional Anti-Jamming (AJ) techniques in satellite communication, such as Frequency-
Hopping Spread Spectrum (FHSS) and Frequency Division Multiple Access (FDMA), have
shown limitations in handling increasingly sophisticated jamming attacks. These
conventional approaches are often static, designed to handle straightforward jamming by
spreading signals over different frequencies or hopping between them to avoid interference
as shown in fig 3. However, they struggle against intelligent jamming techniques that can
adapt in real-time by altering power, frequency, and modulation strategies. This dynamic
jamming creates a major challenge for traditional systems, as they lack the ability to quickly
reconfigure and optimize their responses. Moreover, conventional AJ techniques often
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introduce increased latency, computational complexity, and synchronization delays, which
can degrade the overall communication efficiency, especially in scenarios with rapidly
changing jamming strategies.
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Figure 4 Space-based anti-jamming routing. The red line represents the
found jammed path, and the green one represents the suggested path

The integration of Al and machine learning (ML) into AJ systems addresses these limitations
by introducing real-time adaptability and predictive capabilities.

Al-based solutions, such as Deep Reinforcement Learning (DRL) and Q-learning, can
model the complex interactions between satellite communication systems and
jammers, allowing for dynamic adjustments based on environmental feedback.

DRL, in particular, has been applied to optimize the selection of communication paths,
reducing transmission delays and improving throughput by intelligently predicting
jammer behaviour and adjusting accordingly. Additionally, Al techniques with Time
Steps inferencing such as Long Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU) networks enable satellite systems to anticipate jamming attacks by analysing
temporal patterns in signal interference, thus enhancing synchronization and reducing
response time.

Game theory models integrated with Reinforcement Learning (RL) have also been
developed to manage complex jamming environments. These models treat the
interaction between jammers and satellite users as strategic games, allowing the
system to find optimal strategies to counteract jammers, even when multiple smart
jammers are involved. By combining learning-based approaches with traditional
optimization, Al enables satellite communication systems to quickly adapt to changing
conditions, maintain secure communication, and ensure more robust anti-jamming
measures in an evolving threat landscape. [9], [10], [11]

3.1.3 Al-Based Solutions for Network Traffic Forecasting

Network traffic forecasting is crucial for maintaining reliable communication in satellite
applications, given the self-similar nature and Long-Range Dependence (LRD) of satellite
network traffic. Traditional Time Series forecasting models, such as those based on
Autoregressive Integrated Moving Average (ARIMA) and fractional ARIMA (FARIMA),
Seasonal Autoregressive Integrated Moving Average (SARIMA), Vector Autoregression (VAR)
face significant challenges due to their high computational complexity, which is not well-
suited for the limited computational resources available on satellites.
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Moreover, these conventional models struggle with the LRD characteristic of satellite traffic,
often leading to inaccurate predictions when employing short-range dependence (SRD)
models. In contrast, Al-based solutions offer promising alternatives by efficiently handling
the intricacies of LRD while requiring less computational power. Techniques like combining
FARIMA with Neural Networks (NNs) and utilizing least-square Support Vector Machines
(SVMs) have demonstrated improved accuracy and reduced training times. Additionally, the
integration of Empirical Mode Decomposition (EMD) with Al methods allows for the
simplification of traffic data, transforming it into more manageable forms while enhancing
forecasting speed and precision. This evolution towards Al techniques addresses the
limitations of conventional forecasting systems, facilitating more accurate and efficient
traffic management in satellite networks [12], [13], [14].

3.1.4 Al-Based Solutions for Handoff Optimization

Handoff optimization in Low Earth Orbit (LEO) satellite networks presents unique challenges
compared to terrestrial networks, primarily due to the dynamic connectivity patterns and
frequent movement of satellites. Link-layer handoffs are essential for maintaining
communication as User Equipment (UE) continuously measures the strength of reference
signals from various cells to connect to the strongest signal. Traditional handoff
management strategies rely heavily on signal strength and historical Reference Signal
Received Power (RSRP) to make handoff decisions, which can sometimes lead to
unnecessary transitions.

Researchers have sought innovative approaches to enhance this process, notably by framing
the handoff decision as a classification problem. For instance, implemented variants of
Convolutional Neural Network (CNN) architectures to analyse the historical RSRP data,
leveraging its strong local spatial correlations to improve decision-making accuracy. This Al-
based method significantly reduced the number of handoffs by over 25% for more than 70%
of the UE, showcasing its effectiveness compared to the conventional "strongest beam"
approach, which only achieved a modest 3% reduction in average RSRP. By employing
advanced Al techniques, the optimization of handoff management can lead to more stable
and reliable communication in LEO satellite networks, addressing the limitations of
traditional methods [15].

3.1.5 Al-Based Solutions for Carrier Signal Detection

Carrier signal detection in the frequency domain is critical for wireless communication, as it
enables the separation of signals required for modulation, demodulation, and decoding.
Traditionally, algorithms for this purpose relied on threshold values, often necessitating
human intervention. Although improvements such as double thresholds have been made,
these methods still face limitations in accuracy and efficiency.

Recently, Deep Learning (DL) techniques have emerged as powerful alternatives for carrier
signal detection. For instance, applied a fully connected Neural Network (NN) for detecting
Frequency Shift Keying (FSK) signals, while utilized DL for the blind detection of Morse
signals in wideband spectrum data [16], [17].

Advanced this field by employing a Fully Convolutional Network (FCN) model especially the
U-NET architecture to detect carrier signals in the broadband power spectrum. In their
approach, the broadband power spectrum is treated as a one-dimensional image, with each
subcarrier representing a target object. This method reframes the detection problem as a
semantic segmentation task, classifying each point in the power spectrum as either a
subcarrier or noise [18].
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By utilizing a 1D deep FCN, they achieved significant improvements in detection accuracy
compared to traditional slope-tracing methods. This integration of Al-based solutions in
carrier signal detection reflects a transformative shift towards more efficient and reliable
signal processing in satellite communications.

3.2 Al and Machine Learning in Optical Sensing

As the global reliance on high-speed data services continues to increase, the role of optical
fibre networks in supporting the infrastructure becomes even more essential. Optical fibres,
which are the backbone of Telecom Service Providers/ Internet Service Providers (ISPs), are
crucial for data transmission over long distances. However, managing and maintaining these
networks is challenging, particularly once the fibres are installed underground or in other
inaccessible areas. Over time, external environmental factors, physical damage, or
degradation in the fibres can affect network performance, and detecting these issues
manually can be inefficient and expensive.

Artificial Intelligence (Al) and Machine Learning (ML) especially the ensemble approach of
supervised and unsupervised algorithms is now revolutionizing optical sensing, offering
solutions that can vastly improve the monitoring and maintenance of fibre optic networks.
Following are the ways by which Al and ML are enhancing optical sensing systems,
particularly in their ability to address challenges in real-time monitoring and early detection
of network problems:

i. Real-Time Monitoring:

Once optical fibres are installed, it becomes difficult to assess their condition due to their
locations, often spanning large distances or being buried. Al and ML techniques allow for
continuous real-time monitoring of fibre optic networks, providing insights into the fibre’s
operational health. These technologies analyse vast amounts of data collected by optical
sensors that measure parameters such as signal strength, transmission quality, and
potential disruptions.

ii. Early Detection of Issues:

Al models are trained to detect anomalies in network performance. For example, they can
identify patterns in signal degradation or data transmission losses that might indicate early
signs of damage or wear in the fibre. Machine learning algorithms can differentiate between
minor fluctuations and more severe problems, enabling operators to detect issues before
they result in complete failures or network outages.

ili. Determining the Nature of the Problem:

Beyond detecting issues, Al and ML’s Multiclass Predictive Algorithms are capable of
diagnosing the type of problem affecting the optical fibre network. For example, the
systems can analyse whether the issue is caused by physical damage to the cables, signal
interference, or degradation over time due to environmental factors like temperature or
moisture. By pinpointing the root cause, these systems allow for more targeted repairs,
saving time and resources.

iv. Proactive Maintenance:

Al-driven predictive models enable predictive maintenance by providing insights into when
and where a problem is likely to occur. This allows telecom operators to proactively address
issues before they escalate into major disruptions. For example, if the Al system detects a
trend that indicates gradual signal loss in a specific section of the fibre, operators can
schedule maintenance before the network experiences significant downtime.
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v. Cost-Effectiveness and Operational Efficiency:

Al and ML help reduce the costs associated with network maintenance by minimizing
manual inspections and enabling precise interventions. Instead of waiting for a failure to
occur or conducting time-consuming routine checks, Al can guide maintenance teams to
areas that need immediate attention. This not only cuts operational costs but also improves
network reliability and customer satisfaction by reducing unplanned outages.

vi. Improved Decision-Making for ISPs:

TSPs/ISPs benefit from Al's ability to analyse massive datasets in real time, making informed
decisions about network management. By utilizing Al-based tools, TSPs/ISPs can optimize
their network routing, enhance traffic flow management, and improve overall service
quality, especially during peak usage periods. In case of potential disruptions, Al can
recommend alternate paths for data transmission, ensuring that services remain
uninterrupted [23], [24], [25].

3.3 Al for Optical Switching and Networking

3.3.1 Al in Optical Transmission

This section describes application of Al techniques in the physical layer of optical networks
l.e., in optical transmission-related issues. Al techniques can help improve the configuration
and operation of network devices, optical performance monitoring, modulation format
recognition, fibre nonlinearities mitigation and Quality of Transmission(QoT) estimation
[23].

3.3.1.1 Characterization and Operation of Transmitters

Al techniques facilitate statistical modeling of individual optical components by including
the underlying physics. In all these cases where a deterministic approach results in an
impractical computational load, learning mechanisms are becoming a promising and
accurate performance improvement tool. With the advent of advanced modulation formats
aiming to increase the spectral efficiency, ranging from 16 quadrature amplitude
modulation (16 QAM) to 64 QAM and beyond, the need for robust carrier frequency and
phase synchronization becomes crucial. At this point, a precise characterization of
amplitude and phase noise of lasers is essential. Conventional time-domain approaches
perform coherent detection in combination with Digital Signal Processing (DSP) to cope with
this issue but as higher order modulation formats are implemented, the accuracy of the
phase noise estimation is compromised in the presence of moderate measurement noise. A
frame work of Bayesian filtering in combination with Expectation Maximization (EM) is used
to accurately characterize laser amplitude and phase noise that outperforms conventional
approaches. Results demonstrate an accurate estimation of the phase noise even in the
presence of large measurement noise. Presence of large measurement noise. Additional
examples of the use of Al techniques in the optimization of transmitters and lasers use
simulated annealing to determine the optimal settings in terms of flatness for optical comb
sources for ultra-dense WDM passive optical networks, and use of machine learning, genetic
algorithms and adaptive control techniques to provide a self-tuning mechanism for mode-
locked fibre lasers.

3.3.1.2 Operation of Erabium-doped fibre Amplifier
EDFAs are another optical network component on which Al techniques have been
extensively applied. EDFAs are one of the key elements of optical transport networks,
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capable of extending the reach of the transmitted optical signal by performing amplification
of WDM channels in the optical domain. Machine learning techniques offer efficient
solutions to a wide range of challenges inherent to the operation of EDFAs within optical
fiber transmission. Supervised machine learning is used to statistically model the channel
dependence of power excursions in multi-span EDFA networks, learning from historical
data. It provides the system with accurate recommendations on channel add/drop
strategies to minimize the power disparity among channels. With the arrival of flex-grid
networks, in which dynamic defragmentation is often applied to re-optimize spectrum
assignment to active connections in order to improve the spectral efficiency, to cope with
the power excursion problem in dynamically changing spectral configurations. A ridge
regression model is used to determine the magnitude of the impact of a given sub-channel,
and a logistic regression is applied to specify whether the contribution will result in an
increase or decrease in the discrepancy among post-EDFA powers. Additionally, a novel
method for autonomous adjustment of the operating point of amplifiers in an EDFA cascade
uses a multilayer perceptron neural network.

3.3.1.3 Performance monitoring

A challenge in network control and management is to adapt to the time-varying link
performance parameters, such as Optical Signal to Noise Ratio (OSNR), non-linearity factors,
Chromatic Dispersion (CD) and Polarization Mode Dispersion (PMD). This subsection
analyzes the suitability of the application of Al techniques in monitoring some of the
aforementioned factors. The estimation and acquisition of physical parameters of
transmitted optical signals allow network-diagnosis in order to take actions (repairing
damages, driving compensators/equalizers or rerouting traffic around non-optimal links)
against malfunctions. Application of artificial neural networks in Optical Performance
Monitoring (OPM) includes the simultaneous identification of accumulated non-linearity,
OSNR, CD and PMD, from eye-diagram and eye-histogram parameters. As an example, Deep
Neural Network (DNN), trained with raw data asynchronously sampled by a coherent
receiver is used for OSNR monitoring. Results show that OSNR is accurately estimated. Yet,
this DNN needs to be configured with at least 5 layers and needs to be trained with 400,000
samples to achieve accurate results, requiring long training time.

3.3.1.4 Receiver and mitigation of Nonlinearities

Currently, the information capacity of fiber optic systems is limited by nonlinear effects of
the optical fiber. Extensive research effort has attempted to address mitigation of
nonlinearities on the transmission over optical fiber. Among these nonlinearities, nonlinear
phase noise (NLPN) is one of the prominent factors. So far this issue has been treated with
electronic methods relying on the deterministic information of the fixed fiber link, like
maximum likelihood estimation], digital back propagation and stochastic digital back
propagation, which may be computationally too heavy for practical implementation.
Currently, machine learning techniques are being incorporated to digital signal processing to
mitigate nonlinearities in a more efficient way, allowing more accurate symbol detection. As
an example, a cognitive digital receiver is able to identify the incoming signal format,
QPSK/8PSK/16QAM, without the need to receive a prior control message, thus opening the
door to the autonomous modification of the modulation format. Further, machine learning
algorithm is used to mitigate NLPN affecting M-ary phase-shift keying(M-PSK) based
coherent optical transmission systems.

3.3.1.5 Quality of Transmission (QoT) Estimation
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Optical connection (or light path) QoT estimation prior to deployment is particularly
relevant in impairment-aware optical network design and operation. QoT estimator tool,
the Q-Tool, which computes the associated Q-factors of a set of light-paths, given a
reference topology, by combining analytical models and numerical methods. These
estimates are relatively accurate, but the necessary high computing time to perform the
calculations makes this tool impractical in scenarios where time constraints are important.
Several approaches propose cognitive techniques to solve this drawback. As an example, a
QoT estimator capable of exploiting previous experience and thus, provide with fast and
correct decisions on whether a light-path fulfils QoT requirements or not. It is based on
Case-Based Reasoning (CBR), an artificial intelligence mechanism that offers solutions to
new problems by retrieving the most similar cases faced in the past whether by reusing
them or after adapting them. Cases are retrieved from a Knowledge Base (KB), which can be
static or optimized with learning and forgetting techniques. Results for CBR relying on an
optimized KB show an excellent rate of successful classification of light paths into high/low
QoT categories and more important, up to four orders of magnitude faster than the Q-Tool
mentioned above.

3.3.2 Al in Optical Networking

Al presents several opportunities for automating operations and introducing intelligent
decision making in network planning and in dynamic control and management of network
resources, including issues like connection establishment, self-configuration and self-
optimization, through prediction and estimation by utilizing present network state and
historical data. In this section, we review these applications as well as use cases of Al in
Optical Burst-Switched networks (OBS), in Passive Optical Networks (PONs) and intra-data
centre networks [23].

3.3.2.1 Optical Network Planning

Optical network planning involves tasks like designing the physical topology of the network
and ensuring survivability while minimizing costs. search algorithms and optimization theory
have been widely used for optical network planning and dimensioning, usually
complemented or extended with local search algorithms and metaheuristics like simulated
annealing, swarm optimization and genetic algorithms. Genetic algorithms are used to
address issues in an opaque optical transport network, dimensioning dynamic WDM ring
networks. A related optimization problem like minimizing the number of all-optical
regenerators, is tackled by with genetic algorithm, which also jointly solves the Routing and
Wavelength Assignment (RWA) problem while ensuring the QoT for the light paths to be
established. Swarm Optimization(PSO) algorithm is used to solve the problem of resource
allocation based on the signal-to-noise plus interference ration optimization in a hybrid
wavelength division multiplexing/ optical code division multiplexing network under quality
of service restrictions and the energy efficiency constraint problems. Another example of
the use of Al in resource allocation is the message scheduling algorithm, based on the k-
means clustering algorithm, which ad dresses both message sequencing and channel
assignment for a WDM star network. Based on the produced clusters, the scheduling
algorithm manages to avoid scheduling consecutive messages to the same destination
which harms the channels' utilization.

3.3.2.2 Connection Establishment

Metaheuristics like simulated annealing and evolutionary methods like genetic algorithms or
particle swarm optimization, are effective in solving hard optimization problems because
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they are less likely to become trapped in local optima. Therefore, these methods are useful
to solve the optical connection (light path) establishment problem in optical networks. In
WDM networks, this involves searching a combination of route and available wavelength,
and is so called the Routing and Wavelength Assignment (RWA) problem. In Elastic Optical
Networks(EONSs), it involves searching for a route and a portion of available spectrum and
even a modulation format, i.e., solving the Routing and Spectrum Allocation (RSA) or the
Routing, Modulation Level and Spectrum Allocation (RMLSA) problems.

3.3.2.3 Network Reconfiguration: Virtual Topologies

The virtual topology is the set of optical connections (or light paths) established in a
network. It does not have to be statically configured, but it can be dynamically reconfigured
in order to better adapt to evolving traffic demands with some objectives like reducing
energy consumption, network congestion, end-to-end delay or blocking probability or trying
to ensure Quality of Transmission (QoT), etc. For that purpose, two nature inspired
heuristics, GA and ACO, are used to obtain a survivable mapping of a given WDM virtual
topology. Feasible solutions are obtained even for large topologies when integer linear
programming methods cannot. Also, a multi-objective genetic algorithm to design virtual
topologies with the aim of reducing both the energy consumption and the network
congestion can be used.

3.3.2.4Software Defined Networking

The Software Defined Networking (SDN) paradigm, which decouples control and data
planes, and enables programmability on the former plane, has aroused the interest of both
industry and research communities by allowing networks managers to manage, configure,
automate and optimize network resources via software. In the context of SDN over optical
networks, a correct mapping of the underlying topology at the control plane level is crucial.
Following this requirement, a novel SDN-based cost-effective topology discovery method,
allowing transparent optical networks to automatically learn physical adjacencies between
optical devices, this is achieved by means of a test-signal mechanism—by exchanging and
verifying identifier information between discovery agents— and the OpenFlow protocol,
resulting in correct mapping of the topologies in low total times. Also, neural network-based
methods are used for planning of an SDN-based optical network which are able to predict
link performance in correlation with the OSNR.

3.3.2.5 Application in Optical Burst Switching

Optical Burst-Switched (OBS) networks have also taken advantage of artificial intelligence,
and in particular, of ma chine learning techniques. OBS architecture takes advantages of
learning automata to achieve self-awareness, self-protection and self-optimization,
consequently reducing burst loss probability significantly. Machine learning has been used
in Q-learning in order to solve the path and wavelength selection problem, or by exploiting
the feedback loop to control the re-transmission rate of bursts that are lost. Moreover,
variations of the TCP protocols to enhance the performance of OBS network also utilizes
supervised and unsupervised learning techniques.

3.3.2.6 Applications in Intra-Datacentre Networking

Intra-datacentre (DC) networks are also embracing machine learning techniques in order to
improve performance. For instance, in hybrid-switching-based DCs, where an electrical
packet switched and an optical circuit-switched network live together, machine learning-
based flow classification may be a decisive solution to improve speed and accuracy, besides
improving adapt ability to traffic dynamics. As an example, a neural network flow classifier
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at the edge of the network, combined with an SDN centralized controller able to take
advantage of this classification outcome along with its global view of the resources.

3.3.3 Al for Intelligent Networks

3.3.3.1 Network Planning and Design

Al is transforming network planning and design by using advanced analytics and predictive
modelling to enhance cost efficiency and optimize Total Cost of Ownership (TCO). Through
machine learning techniques, Al systems can perform high-accuracy traffic forecasts and
predict Key Performance Indicators (KPIs), enabling service providers to anticipate demand
and address potential issues proactively. For instance, Al-driven models can identify
network bottlenecks and provide recommendations for load balancing, thus improving
network performance. By analysing live radio measurements and subscriber traffic patterns,
Al tools facilitate data-driven decisions, ensuring efficient utilization of existing resources
and guiding strategic 5G network expansions. This optimization leads to enhanced service
quality, reduced operational costs, and an overall more reliable communication network
infrastructure [22].

3.3.3.2 Network Operation

Al is transforming network operations by driving the shift towards zero-touch automation,
where manual interventions are minimized, and processes are automated end-to-end. Al
algorithms analyse vast amounts of real-time data from network activities, enabling service
providers to make augmented, data-driven decisions. Al/ML and Generative Al enable real-
time detection of issues like faults and SLA breaches, diagnose problems, provide
recommendations, and take actions to resolve network issues. This results in predictive and
proactive network management, where potential issues are identified and resolved before
they impact service quality. Through techniques like anomaly detection and predictive
analytics, Al helps operators anticipate faults, optimize resource allocation, and streamline
maintenance tasks. This not only improves operational efficiency but also enhances business
agility, as networks can quickly adapt to changing demands, reduce downtime, and deliver a
more reliable user experience. The integration of Al in network operations enables dynamic
optimization, self-healing capabilities, and faster adaptation to new services, paving the way
for fully autonomous networks [22].Al is transforming network operations by driving the
shift towards zero-touch automation, where manual interventions are minimized, and
processes are automated end-to-end. Al algorithms analyse vast amounts of real-time data
from network activities, enabling service providers to make augmented, data-driven
decisions. This results in predictive and proactive network management, where potential
issues are identified and resolved before they impact service quality. Through techniques
like anomaly detection and predictive analytics, Al helps operators anticipate faults,
optimize resource allocation, and streamline maintenance tasks. This not only improves
operational efficiency but also enhances business agility, as networks can quickly adapt to
changing demands, reduce downtime, and deliver a more reliable user experience. The
integration of Al in network operations enables dynamic optimization, self-healing
capabilities, and faster adaptation to new services, paving the way for fully autonomous
networks [22].

3.3.3.3 Network Optimization
Al is revolutionizing network optimization by enabling real-time diagnostics and continuous
performance enhancements across communication networks. Utilizing advanced
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algorithms, Al systems scan all network cells in minutes, rapidly identifying performance
issues with high precision. This proactive approach allows for the early detection of up to
50% more issues compared to traditional methods, significantly reducing downtime and
improving network reliability. Al-powered diagnostics leverage machine learning models to
analyse large datasets from various network elements, pinpointing bottlenecks, predicting
anomalies, and recommending corrective actions. This results in enhanced operational
efficiency, with reported improvements of up to 30%, as Al-based optimization dynamically
adapts to traffic changes, balances loads, and ensures optimal resource utilization.
Ultimately, this leads to improved service quality, reduced operational costs, and a more
resilient network infrastructure [22].

3.3.3.4 Network Security

Al is playing a critical role in enhancing the security of 5G networks by automating the
detection and mitigation of complex cyber threats. With its ability to analyse massive
volumes of network data in real-time, Al can identify zero-day attacks—new vulnerabilities
that traditional systems may fail to detect—by recognizing unusual patterns and behaviours
indicative of potential threats. Machine learning models are trained to predict upcoming
attacks by analysing historical attack data and identifying early warning signs, enabling pre-
emptive action. Additionally, Al-driven solutions can detect ongoing attacks with high
precision, isolating affected components to prevent the spread of malicious activities. By
utilizing advanced techniques like deep learning and reinforcement learning, Al systems can
also dynamically test and deploy new defence mechanisms at runtime, adapting to evolving
threats and ensuring continuous protection. This proactive and adaptive approach
significantly strengthens the overall security posture of 5G networks, safeguarding them
against both known and emerging threats [21].

3.3.4 Al for Improving Wi-Fi Performance

The transformative impact of Al on Wi-Fi extends far beyond immediate performance
enhancements, setting the stage for a new era of intelligent networking. Some of the
capabilities of Al-powered Wi-Fi are:

> Predictive Analytic:

Utilizing machine learning algorithms to sift through historical data, Al Wi-Fi systems
forecast future network demands. This foresight allows for anticipatory adjustments to
sustain peak performance, illustrating a proactive approach to network management.

» Automated optimization:

Al Wi-Fi continuously monitors the network environment, automatically tweaking
parameters such as power levels, channel assignments, and load balancing. This ensures
optimal performance and user experience without manual intervention.

> Intelligent troubleshooting:

By implementing Al-powered diagnostics, the time to resolve network issues is drastically
reduced. These systems accurately identify the root causes of problems, often rectifying
them autonomously, thus minimizing the need for human intervention.

» Enhanced security:

Leveraging Al and machine learning, Wi-Fi networks are better equipped to detect and
neutralize security threats. This advanced capability ensures comprehensive protection for
both enterprise data and connected devices.
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» Seamless connectivity:

Al in Wi-Fi facilitates smooth transitions between access points and dynamically allocates
resources based on real-time user demand. This feature is crucial for maintaining consistent
connectivity, especially for mobile users and loT devices [26].

3.3.5Intelligent Routing

Network routing typically consumes significant bandwidth and resources, particularly when
selecting optimal paths to ensure efficient data transmissions from the source to the
destination in large-scale loT environments, where frequent updates are necessary.
Introducing GAIl into network routing can enhance the efficacy of choosing and optimizing
routing algorithms for certain network objectives by simulating, creating, and analysing
synthetic network scenarios. An example of this is exploiting a one-shot conditional
generative routing model to perform one-shot routing to the pins within each network, and
the order in which the networks need to be routed is learned adaptively. Another example
of GAIl in routing solutions for different network status distributions and topology is
exploiting a transfer RL algorithm to improve training efficiency by rapidly transferring
knowledge.

3.3.6 Cloud-Based Assistive Approach

When it comes to the telecommunications cloud, the following applications are best suited

for the incorporation of Al:

» By optimizing the network and automating the operations, costs can be reduced, and
productivity increased.

» Big data-based analytics provide for effective value mining and risk protection in the
context of large network data.

» Implementing unified open interfaces or standards for interoperability, as well as layer
decoupling and control of networking resources, via hybrid infrastructure.

» Preferring sovereign cloud providing air-gapped solutions that are designed around open
cloud strategy and use leading open source components in its platform and managed
services. The underlying solution would then be ‘Secure by Default’

4.0 Generative Al in Telecom

i. Customer Services

Generative Al can help transform contact centers into a competitive advantage by reducing
call average handle time (call duration) and first call resolution (get the right answer first
time), improving agent productivity and satisfaction, lowering costs, and helping to identify
business improvement opportunities using conversational insights. Customer care agents
and supervisors can better understand and respond to customer needs by using real-time
agent assist solutions. In addition, IVR Call automation leverages generative Al to
automatically analyze call transcripts, design optimal interactive voice response flows, and
generate the required IVR call flows to increase containment rates and dramatically reduce
contact center costs. By analyzing customer preferences and usage patterns, generative Al
using Large Language Models such as Generative Pre-Trained Transformers (GPT), Language
Model for Dialogue Applications (LaMDA), Pathway Language Models (PALM) personalizes
service recommendations and promotions. It enables proactive support by predicting
potential issues like outages, ensuring timely resolution and an improved customer
experience. For example, a Latin American telecom provider is upgrading its Al-powered

20



chatbots to better support agents, aiming for a 15-20% reduction in operational costs.
These chatbots can handle routine inquiries, provide instant responses, and redirect
complex issues to human agents, reducing customer wait times. Additionally, the telecom
company leverages generative Al to summarize client interactions from voice calls and
written communications across various use cases. By integrating generative Al, telecom
companies can achieve faster resolutions, boost customer satisfaction, and drive
operational efficiencies in their service models.

ii. Call Centre

Al-driven Chabots provide accurate and personalized customer support, reducing response
times and costs. They gather customer feedback for refining services and improving
satisfaction, while ensuring efficient and scalable support solutions.

iii. Intelligent Infrastructure Planning
Generative Al revolutionizes infrastructure deployment by analyzing geographic and
demographic data to identify optimal locations for installations like cell towers and fiber
networks. It simulates network configurations to improve design, capacity planning, and
resource allocation, enhancing cost efficiency and reliability.

iv. Boost Revenue through Personalization

Generative Al is transforming marketing and sales by enabling hyper-personalization,
uncovering deeper customer insights, and accelerating content creation. It uses advanced
models to analyse customer data, such as demographics, preferences, and behaviour, to
craft tailored messages and campaigns. For instance, a European telecom company
leverages generative Al to identify new sales leads from customer calls, achieving over a
10% conversion rate in its pilot project. The Al model processes standard marketing
messages alongside customer data like household details, device type, and location. It
incorporates cognitive biases, such as messaging that evokes scarcity (e.g., limited-time
offers) or emphasizes authority (e.g., endorsements or industry expertise), to target
microsegments effectively. Additionally, generative Al with use of Generative Adversarial
Networks (GAN or Super GAN) models automates the creation of personalized visual media
and communication, ensuring that campaigns resonate with individual customers. By doing
so, companies can improve customer engagement, enhance lead generation, and optimize
sales strategies, achieving higher efficiency and better ROI.

v. Personalized Experience

In addition to further improvements in customer call centre interactions, generative Al can
deliver improved personalization in ecommerce interactions — a big factor in helping
customers sort through their choices of phones and calling plans. Personalization is also
important for lowering churn, offering relevant new services, and managing the customer
lifecycle. For example, generative Al could enable CSPs to produce marketing campaign
content customized for select themes, and target individual customers with customized text
and images.

vi. Human-Readable Content

Gen Al is used in creation of human-readable content by automating tasks like generating,
summarizing, and translating text, images, audio, and video. It enables businesses to
streamline processes across marketing, customer service, and operations by producing
customized text-based outputs such as service-level agreements, troubleshooting guides,
and training materials. In telecommunications, GenAl can create or interpret technical
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documentation, generate network characteristics from textual inputs, and even assist
through dialogue-based systems like ChatGPT. By making content creation more efficient
and accessible, GenAl enhances productivity and ensures consistency across communication
channels.

vii. Machine-Readable Content

Generative Al plays a pivotal role in creating machine-readable content by analysing raw
data, such as mobile network logs or configuration parameters, to generate outputs like
coverage maps, incident detection reports, or optimized resource allocations. It can
synthesize additional data to augment limited datasets, addressing challenges like data
scarcity due to low network activity or technical issues. For instance, in networks, GenAl can
simulate missing data frames in virtual environments or during poor connections, ensuring
seamless user experiences. This capability enhances data utility for training models and
improves network performance and resilience.

viii. Digital Twins

Generative Al transforms the creation and use of digital twins by enabling more efficient
and realistic virtual representations of physical systems, processes, or objects. Traditionally,
building digital twins required extensive coding, programming resources, and data
collection, which was both time-consuming and resource-intensive. Generative Al simplifies
this process by training models on the behavior of physical counterparts, automating the
generation of digital twin behaviors and making them more reflective of real-world
dynamics by leveraging Cognitive Intelligence using structured, semi structured and
unstructured data. It can also create streamlined digital twins that accurately simulate key
functions while reducing computational costs, enabling faster response times. This
advancement makes digital twins more accessible and affordable, empowering industries to
optimize, test, and validate systems with minimal risk to live networks.

ix. Semantic Communication

Encoding/ Transmission in Synthesis of

O

translation by compressed format, decoded
generative Al saving bandwidth content

Raw Compact symbolic Synthesized Receiver
information representation content

Figure 5 Semantic Communication

Generative Al significantly enhances semantic communication by enabling the compact
encoding of raw data into compressed, multi-dimensional symbols that can be transmitted
efficiently and later synthesized at the receiver end. This approach minimizes bandwidth
requirements while maintaining the ability to reconstruct understandable content for end
users. Generative Al can assist in both encoding and decoding processes, improving
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transmission efficiency in mobile networks. However, the computational and storage
demands of these Al processes, particularly in resource-constrained environments like Radio
Access Networks (RANs), necessitate innovative strategies such as algorithm compression or
distributed computing at the network edge for scalable implementation.

X. Network Deployment
Generative Al can provide coding assistance and automate testing tasks — to free up
engineers’ time and allow them to focus on more complex, meaningful work that makes the
best use of their time and talents.
xi. Fraud Protection

Revenue leakages pose a significant challenge for telcos, impacting up to 10% of their
revenues and translating to nearly a hundred billion in annual lost revenue across the
industry. Addressing this issue involves manual processes and analysing disparate
applications and data sources in various formats - a daunting task. However, generative Al
offers a powerful solution by rapidly analysing these disparate data sources to automatically
discover and remediate sources of revenue leakage, potentially saving telcos millions in lost
revenue.
Additionally, broadening the spectrum of data sources, including live data access through
LLM plugins, will enrich contextual insights and improve accuracy. In parallel, fraud attacks
continue to rise and increase in sophistication, costing businesses financially and severely
impacting brand and reputation. As more services and transactions expand online,
businesses need tools to validate that their users are well- meaning human beings and not
malicious bots and fraudsters

xii. Generate Powerful Sales Content
Sellers are leveraging generative Al to automate manual work and help them seize
opportunities faster. Telecom b2b sales teams are usually overwhelmed with the manual,
error prone, and time- consuming work needed to respond to RFPs, spending precious
hours on repetitive, undifferentiated tasks.

xiii. Simplifying Network Operation
Generative Al provides the connective tissue to break down network infrastructure silos like
RAN, Core, IMS, enabling zero-touch operations. It leverages run-books, configures, tickets
and docs to detect issues, diagnose root causes, recommend fixes and automate
remediation - reducing triage times and improving customer experience.

xiv. Generative Al for Threat Response
It is understandable that any malicious user can use Al to quickly launch multipronged
attacked on critical national infrastructure. To secure such attacks, organization should be
using generative Al to be able to respond the attack as it evolves. For this it is imperative
that the security operations of organizations can take help of telco trained generative Al
tools to:
» Showcase how the attacker entered the telecom network and moved laterally.
» And respond in real time to the attacks.
Subsequently, it is a fact that telecom security is a complex topic cannot be left to the
relatively new (security operations centre) engineer who takes time to understand the
attack, its kill chain and possible remediation.
Hence, a telco-trained generative Al system will be able to assist the SOC analysts to be
pinpoint the affected elements; the technique used by the attacker and either remediate
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the attack automatically or provide guided responses to the SOC analyst to take the
appropriate threat remediation steps.

xv. Al for Securing the Telecom Network
A telco-trained Al intelligence system promptly correlates data from various security
controls and does log analysis across complex telecom networks. This results in unveiling
critical details about attack attempts on the core, RAN, or transport network, showcasing
the prowess of Al-driven investigative approaches in security operations for service
providers and critical infrastructure enterprises.
The Al Security system can be used, for example, to create a digital identity for users and
network entities. This will speed up the detection of new threats for which there were no
“rules” defined.
Using network digital twin, the Al Security system provides comprehensive visibility across
endpoints, network, cloud and email provides coverage of all network elements, devices
and connections from telco Radio Access Network (RAN), Transport and Core networks. The
use of Al and advanced analytics help reduce workloads of correlating and contextualizing
security incidents and achieve faster threat detection and response.
The Al security system can map the attack and its complete kill chain and showcase how the
attacker entered the telecom network and moved laterally.

5.0 AlforloT

Emerging paradigms like the Internet of things (loT), Industrial Internet of Things (lloT),
Artificial Intelligence enabled Internet of Things (AloT) leveraging edge computing and
embedding Artificial Intelligence at IoT device level, Industry 4.0 or the tactile Internet,
impose stringent requirements on networks, such as low latency, and high bandwidth,
availability and security, thus posing a significant challenge. The combination of 5G mobile
communications systems with high-speed fault-tolerant fiber backhaul infrastructures will
be key enabling technologies for these networks. End-to-end latency for some applications
can be limited to a few milliseconds (e.g., 1 ms for tactile internet). Thus, the distance
between the edge and computing resources must be limited to some tens of kilometers,
and a decentralized service platform architecture based on Mobile Edge Computing (MEC)
or Fog Computing (FC) is required. However, the integration of various computing
paradigms (MEC, Fog and cloud) involves the development of integrated resource
management, task allocation and failure handling techniques, to name just a few. Therefore,
the joint allocation of computing and networking resources (also including inter datacenter
networking) is receiving increasing attention. Al is expected to play a key role to facilitate
efficient joint operation of network and computing devices, performing tasks like Virtual
Network Function (VNF) distribution, task allocation, predictive caching and
interpolation/extrapolation of human actions, and thus enhancing performance and
providing better support for loT and tactile Internet applications. For example, novel tactile
Internet capable PON and a dynamic wavelength and bandwidth allocation method can
incorporate a mechanism to predict the traffic load to vary the number of active wavelength
channels in the network, and prioritize the transmission of tactile Internet traffic (vs. other
traffic) to comply with delay requirements [25], [26].

5.1 Al Enabling Intelligent IoT Endpoints and Edge
loT devices are increasingly generating large amounts of data, much of which ultimately
needs to go to the cloud. Although 5G solves issues around the physics of transmission. Al
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helps in processing massive amounts of raw data at the edge to reduce data size. This can
be easily seen in vision-driven applications such as autonomous vehicles and drones.

5G Endpoints 5G Cloud
.“ -
o= o a 5G Edge

Figure 6 Al Enabling Intelligent loT Endpoints and Edge

In many implementations, endpoints lack 5G due to cost and power constraints. Instead,
they connect to intelligent 5G edge devices such as loT gateways and CPEs enabled with
mMTC. These devices collect endpoint data, filter and process it, and provide secure
upstream and downstream channels. The devices can be potentially used in multiple
scenarios, including for low-latency Untethered XR devices, industrial machines and others.
Effectively, 5G loT gateways will be edge servers loaded with Al capabilities to facilitate real-
time devices, data management, control, analytics and action. Al-empowered drones and
robots are good examples of these types of endpoints. They show potential in various
industrial settings, including routine inspections across extensive and dangerous
environments [25], [30], [31].

6.0 Challenges to Al Security

Al has great potential to build a better, smarter world, but at the same time faces severe
security risks. Due to the lack of security consideration at the early development of Al
algorithms, attackers are able to manipulate the inference results in ways that lead to
misjudgment. In critical domains such as communication networks, security risks can be
devastating. Successful attacks on Al systems can endanger personal safety and national
security. To mitigate Al security risks, Al systems design must overcome five security
challenges:

i. Software and hardware security:

The code of applications, models, platforms, and chips may have vulnerabilities or
backdoors that attackers can exploit. Further, attackers may implant backdoors in models to
launch advanced attacks. Due to the inexplicability of Al models, the backdoors are difficult
to discover.

ii. Data integrity:

Attackers can inject malicious data in the training stage to affect the inference capability of
Al models or add a small perturbation to input samples in the inference stage to change the
inference result.

iii. Disparate Data Sources Integration:
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Data Integration from multiple data sources including CRM, mobile app/web, images, video

generated from camera, logs, geospatial, intelligent networks, data usage, SMS, emails etc.

iv. Big Data Characteristics and Volumetric and Compute Hungry Deep Learning
Algorithms:

Generating realtime inferencing from both Structured and Un Structured Data for Cognitive

Intelligence over compute intensive Deep Learning Algorithms such as CNN, Transformer

Algorithms such as LLM’s based on GPT architecture.

v. Model confidentiality:

Service providers generally want to provide only query services without exposing the

training models. However, an attacker may create a clone model through a number of

queries.

vi. Model robustness:

Training samples typically do not cover all possible corner cases, resulting in the

insufficiency of robustness. Therefore, the model may fail to provide correct inference on

adversarial examples.

vii. Data privacy:

For scenarios in which users provide training data, attackers can repeatedly query a trained

model to obtain users’ private information [21].

viii. Adversarial Attacks on Network Optimization:

Al systems in telecom often manage network traffic, allocate spectrum, and handle

resources. Attackers can trick these systems, causing network congestion, poor service

quality, or even service outages.

iX. Real-Time Decision Manipulation:

Al systems in telecom make quick decisions for tasks like call routing, fraud detection, and

fault prediction. If attackers manipulate inputs or delay responses, it can lead to disruptions

or financial losses.

X. Scalability of Security:

Telecom networks are huge and complex. It’s challenging to scale Al security across so many

devices, protocols, and regions. New solutions are needed to provide consistent protection

everywhere.

xi. Supply Chain Vulnerabilities:

Many Al systems in telecom depend on third-party hardware and software. Compromised

components in the supply chain can introduce vulnerabilities that are difficult to detect and

mitigate, especially in distributed operations.

xii. Regulatory and Compliance Challenges:

Telecom networks operate under strict regulatory frameworks. Ensuring that Al systems

meet these requirements while maintaining security and privacy is not easy and needs

careful planning.

7.0 Types of Al Security Attacks and Defence Mechanisms
Al systems face various security threats, which can be broadly categorized into four main
types:

i. Evasion Attacks: Attackers craft adversarial examples to manipulate model predictions.
To mitigate these security risks, defence techniques are:
o Network Distillation
o Adversarial Training
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o Adversarial Example Detection
o Input Reconstruction
o DNN Verification

ii. Poisoning Attacks: Malicious data is injected into the training set to alter model
behavior. Defence techniques for poisoning attacks are:
o Training Data Filtration
o Regression Analysis
o Ensemble Analysis

iii. Backdoor Attacks: Attackers implant hidden triggers in models, allowing them to control
outputs when specific inputs are provided. Defence techniques for backdoor attacks are:
o Input Pre-processing
o Model Pruning

iv. Model Extraction Attacks: Attackers attempt to replicate a model's functionality through
repeated querying, effectively stealing the model. Defence techniques for model
extraction attacks are:
o Private Aggregation of Teacher Ensembles(PATE)
o Differentially Private Protection
o Model Watermarking

v. Data Inference Attacks: Attackers aim to extract sensitive information from Al models,
particularly when user data has been used for training. Defence techniques for the data
Inference attacks are:
o federated learning
o homomorphic encryption
o differential privacy

vi. Trojan Attacks: Attackers compromise the Al system during development or deployment
by embedding Trojan code. This can activate harmful behaviours under specific conditions.
Defence techniques for the Trojan attacks are:
o Static and Dynamic Code Models
o Model Behaviour Analysis

vii. Resource Exhaustion Attacks: Also known as Denial-of-Service (DoS) attacks, these
target the computational resources of Al systems, causing slowdowns or crashes. Defence
techniques for Resource exhaustion attacks are:
o Rate Limiting
o Load Balancing
o Anomaly Detection
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8.0 Case Studies On Al Applications for Enhancing Customer
Experiences
Case Study 1: Wipro Unlocks the Power of Network Digital Twins
Digital twins enable telecom companies to simulate physical network changes, analyse
performance, and validate decisions—enhancing operational efficiency and network quality.
Issue: Wipro was challenged with network change management to test network
configurations before deployment and identify potential issues that save time and cost.
Another issue was analysing and predicting network performance to analyse to prevent
quality degradation. In addition, telecom companies need to ensure their Radio Access
Network (RAN) slices deliver on their Service-Level Agreements (SLAs) to fulfil business
contract requirements.
Solution: To address these challenges, Wipro built a telecom network digital twin, a
platform for developing OpenUSD applications for industrial digitalization and generative
physical Al. The solution enabled 5G new radio (NR) traffic steering and slice SLA assurance.
Wipro’s Al/ML model predicts SLA adherence of RAN slices and suggests necessary steps to
avoid SLA violations. This improved network capacity and resource utilization for telecom
companies while enhancing network quality of service with fewer dropped calls for
customers [19], [20].

Case Study 2: Infosys Transforms Network Operation Centres and Automates Network
Design

Issue: Telecom companies are challenged with meeting Service-Level Agreements (SLAs) for
customers that ensure high network quality of service. This includes quickly
troubleshooting network devices with complex issues, identifying root causes, and resolving
issues efficiently at their Network Operations Centre (NOC). Network architects, engineers,
and IT professionals manually retrieve and customize Topology and NOC processes,
minimize network downtime, and optimize network performance.

Solution: Infosys developed an automated tool to generate standard TOSCA templates. The
generative Al- powered solution achieved 28.5% lower latency and 15% absolute
improvement in accuracy. This frees network service designers, as well as OSS solution
architects and directors, to design carrier-grade networks faster [19], [20].

Case Study 3: ServiceNow Automates Network Planning and Operations

Issue: ServiceNow was challenged with distilling and actioning on volumes of complex
technical data generated from wireless network incidents. The company also needed to
meet diverse network services, local configurations, and rulings.

Solution: To improve network operations, ServiceNow used generative Al to summarize
network incident data. The solution reduced Mean Time to Resolution (MTTR), tailored
communication to enhance IT team satisfaction, and efficiently prioritized high-risk incidents
to reduce disruption to customer service. For example, in the case of a fibre cut,
ServiceNow’s generative Al solution can decipher technical jargon, distils complex
information into clear and concise summaries, and speed up time to resolution. This not
only drives cost savings, but also improves customer experiences by minimizing service
disruptions. ServiceNow also built a network configuration template for network design and
fulfilment. The solution improves time to market for new wireless networks; increases
customer loyalty with fast, accurate service delivery; and reduces manual errors that lead to
delivery delays, customer dissatisfaction, and costly corrections [19], [20].
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Case Study 4: Bharti Airtel’s Next-Gen Al-powered network platform - A-SON

Issue: Airtel was challenged with building a system that works autonomously 24*7 to
manage network degradation and customer experience in closed loop manner, especially
for self-identification of issues to optimize the network.

Solution: Bharti Airtel Limited designed & deployed Al driven A-SON (Self Optimizing
Network) solution, which can predict the problems or issues that the networks will face
ahead of time, and ensure that the network teams can take necessary action to resolve the
issue. This helps in delivering seamless network and connectivity services round the clock
and ensures that Airtel customers get the best voice and data experience across the
country.

Case Study 5: Deustsche Telekom enhances customer support

Issue: Deutsche Telekom, a leading integrations telecommunications company, has over 250
million customers and receives millions of requests every year.

Solutions: Deutsche Telekom is using Amazon SageMaker and Amazon EC2 Inf2 instances to
process millions of customer requests and keep costs down to process customer support in
real-time. They created services and digital agents to help alleviate the load of those
customers, and are building LLM applications to create a more natural response for their
customers. Costs associated with generative Al solutions are significant owing to the
computational power required. Using Inferentia 2 instances Deutsche Telecom was able to
achieve 25% relative Improvement on the non-functional requirements such as throughput
latency at a fraction of the cost. Generative capabilities help agents retrieve information real
time as opposed to having to wait in several interactions or raising tickets and then getting
them answered by different sectors. They consolidate all the support at the same time
helping customers get faster solutions.

Case Study 6: Nokia Uses GenAl XDR to secure the critical telecom networks and respond
to telecom threats in real time

Issue: Telecommunications security is inherently complex, requiring security analysts in
Security Operations Centres (SOCs) to efficiently manage security incidents while also
possessing deep expertise in telecommunications networks. With 5G making the network
more complex, analysts struggle to keep up and make sense of all the incoming data,
making it increasingly difficult to get the complete picture and generate actionable threat
intelligence. In addition, ensuring continuous network operation is crucial in the 5G era for
critical services like autonomous vehicles and smart grids, which are vital for public safety
and economic stability.

Solution: To address these challenges, Nokia, in partnership with Microsoft, has been
leveraging Al and automation to enhance the award-winning security orchestration
software suite, Nokia NetGuard Cybersecurity Dome. This telco-centric solution is built on
an Extended Detection and Response (XDR) architecture, providing comprehensive visibility
across the entire telco network, covering Radio Access, Transport, and Core domains. The
integration of Al and advanced analytics significantly reduces the workload of correlating
and contextualizing security incidents, enabling fast and accurate threat detection and
response.
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The new telco-centric generative Al assistant integrated into Nokia NetGuard Cybersecurity
Dome further enhances XDR capabilities by quickly analysing vast amounts of information
related to cyber threats. This assistant is based on large language models within Microsoft
Azure OpenAl Service, trained with insights from 5G network architecture, 5G security
practices, and Nokia’s telco domain expertise. The training includes information from 3GPP
and NIST network architecture specifications, 5G topology spanning RAN, Transport, and
Core, and adversary tactics from MITRE ATT&CK and FiGHT (5G Hierarchy of Threats). Nokia
is providing telco-centric XDR capabilities that result from the extensive 5G telco security
knowledge and experience in secure hybrid-cloud deployments, ensuring faster threat
detection and response to enhance the security posture of telecom operators.

Case Study 7: ASTR - Al-Powered SIM Verification System by the Department of
Telecommunications

Issue: The growing misuse of telecom networks through fraudulent SIM card connections
posed a serious challenge to the integrity of India's telecommunications ecosystem.
Multiple SIM connections linked to the same individual led to cyber frauds, security threats,
and identity misuse. The Department of Telecommunications (DoT) needed an advanced
automated solution to detect and eliminate such fraudulent connections effectively.
Solution: To address this challenge, DoT has developed a powerful Al/ML based engine
called ASTR (Artificial Intelligence and Facial Recognition powered Solution for Telecom SIM
Subscriber Verification) to detect mobile connections taken on fake/forged documents to
weed them out from the telecom ecosystem. As on 31.03.2024, 61.47 lakh mobile
connections have been disconnected after failing reverification.
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9.0 Conclusion

Artificial intelligence (Al) is rapidly transforming the telecommunications industry, offering
Al-powered solutions that enhance network performance, customer experience, and
security. As Al technology continues to evolve, it holds the potential to revolutionize the
industry, making it more efficient, reliable, and customer-centric. The integration of Al in
telecommunications is poised to reshape the industry, driving significant advancements in
connectivity, operational efficiency, and service personalization.

Al-driven techniques hold great promise across various applications, including network
automation, capacity planning, enhanced security, energy efficiency, customer insights,
predictive maintenance, and service assurance. By leveraging Al, communication networks
can become more intelligent, adaptive, and capable of meeting the growing demands of
modern digital communication. As telecommunications companies embrace Al
technologies, they unlock new opportunities to optimize operations and enhance customer
engagement in the digital era.

However, while Al offers numerous benefits, challenges remain, such as scalability,
interpretability, and privacy concerns. Developing scalable Al models, ensuring transparency
in Al-driven decisions, and safeguarding user privacy must be key priorities for future
research and development. The establishment of industry standards and benchmarking
frameworks will be crucial to ensuring responsible Al deployment in communication
networks. Additionally, addressing infrastructure costs through strategic investments—such
as securing GPU supplies, improving power and land availability, and developing shared Al
infrastructure—can accelerate Al adoption across the industry.

Collaboration between industry stakeholders, academic institutions, and regulatory bodies
is essential to developing best practices, ethical guidelines, and policies that govern Al in
telecommunications. By addressing these challenges and leveraging Al responsibly, telecom
operators can enhance network performance, deliver personalized experiences, and
strengthen security. As Al technologies continue to advance, communication networks will
become more intelligent, adaptive, and resilient, paving the way for a highly connected and
efficient digital future.
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11.0 Abbreviations

5G
6G
Al
AloT
B2C
B5G
BERT
CEM
CNNs
CR
CSPs
CTCs
DAI
DDOS
DL
DNN
DRL
EAs
FOTA
GANs
GAs
GDPR
GEO
HAPs
IDS
loT
KPls
LEO
LSTMs
MEO
ML
MLPs
MPC
NFV
NLP
NLU
OCR
PSO
QoE
QoS
RF
RL
RNNs
RPA
SAGIN
SDN

: Fifth Generation

: Sixth Generation

. Artificial Intelligence

. Artificial Intelligence Internet of Things
: Business-to-consumer

: Beyond 5G

: Bidirectional Encoder Representations from Transformers

: Customer Experience Management

: Convolutional Neural Networks

: Cognitive Radio

: Communications Service Providers

: Connectionist Temporal Classification
: Distributed Artificial Intelligence

: Distributed Denial of Service

: Deep Learning

: Deep Neural Network

: Deep Reinforcement Learning

: Evolutionary Algorithms

: Firmware over the Air

: Generative Adversarial Networks
: Genetic Algorithms

: General Data Protection Regulation
: Geostationary Orbit

: High -Altitude platforms

: Intrusion Detection Systems

: Internet of Things

: Key Performance Indicators

: Low Earth Orbit

: Long Short-Term Memory Networks
: Medium Earth Orbit

: Machine Learning

: Multilayer Perceptron

: Multi- Party Computation

: Network Function Virtualization

: Natural Language Processing

: Natural Language Understanding
: Optical Character Recognition

: Particle Swarm Optimization

: Quality of Experience

: Quality of Service

: Radio Frequency

: Reinforcement Learning

: Recurrent Neural Networks

: Robotic Process Automation

: Space- Air- Ground Integrated Network
: Software Defined Networks
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SLAs : Service- Level Agreements

SOTA : Software over the Air

SPA : Shortest Path Algorithm

STT : Speech- To- Text Transformers
TTS : Text- To- Speech

TSP : Telecom Service Provider
UAVs : Unmanned Aerial Vehicles

UX : User Experience

VUI : Voice User Interface

XAl : Explainable Al
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