

Quantum Materials and Devices: The case of exemplary "lane-discipline"

http://cnqt-group.org

https://twitter.com/quantumtranspo1

Bhaskaran Muralidharan Dept. of Electrical Engineering, Indian institute of technology Bombay First International Quantum Conclave 27/03/2023

Quantum Technologies

Sensors

Quantum Metrology, Optical Metrology, Quantum Gyroscopes, Magnetometers, Clocks, Accelerometers, etc.

Quantum **Enhanced Technologies**

Quantum Heat Engines, Refrigerators, Batteries, Quantum Inspired Algorithms, Quantum Imaging, Quantum Machine learning etc.

Quantum Computation

Quantum Algorithms, Coherent Architectures for QC, NISQ Devices, Quantum Cryptography, Quantum Chemistry on Quantum Computers etc.

Quantum **Communication**

Quantum Secure Key Distribution, Communication Theory, **Ouantum Satellite** Communication, etc.

Quantum **Materials**

Quantum materials for QC, Topological Materials, Weyl, Dirac & Majorana, Quantum Liquids, etc.

World of Quantum Materials

In this Keynote--- Only the "tip" of the Iceberg!

Quantum Materials: Topological Insulators

Standard Materials – Low-level QM!

Topological Quantum Materials?

← Conventional Materials

Topological Materials \rightarrow

Beyond Moore: Binary and nonbinary Logic ISSUE: Power Dissipation

We need to "dig" into QM at a "higher" level

Beyond Moore: Quantum Computation ISSUE: Qubit stability (Decoherence)

0

Classical Bit

• 1

Qubit

Quantum Effects "visible" at Macroscale!

Family of Quantum Hall Effects :: Starting point of topological stability

Spin-orbit coupling

C Spin Hall effect

Magnetic field

Magnetization

Recurring theme in topological quantum materials

Edges 🙂

Topology- a way to classify - Quantum robustness

Continuous deformation (no hole)

The Nobel Prize in Physics 2016

Ill: N. Elmehed. © Nobel Media 2016 David J. Thouless Prize share: 1/2

Ill: N. Elmehed. © Nobel Media 2016 F. Duncan M. Haldane Prize share: 1/4

Ill: N. Elmehed. © Nobel Media 2016 J. Michael Kosterlitz Prize share: 1/4

How to exploit topology?

https://topocondmat.org

Harness the Phase transitions
Harness the robustness!

"Topo"-tronics -> Topological Electronics → Topological QM to devices

A tale of two "valleys"

12

The vast "flatland" frontier

Quantum Devices: Building Blocks

Quantum Communications

Single photon Emitters Various platforms

Anatomy of a Building Block

Graphene based qubits

Single Photon Emitters - TMDC

Azzam et.al., Appl. Phys. Lett., 118, 240502, (2021)

Superconducting Hybrid Systems

• 19

"Beyond Moore" Device Research Highlights

- Spin filtering devices
- STT-MRAM
- Toward Neuromorphic
- 2D topological spintronics
- Materials -> Devices -> Functionalities

Recent Publications Phys. Rev. B, 98, 125417, (2018). Phys. Rev B, 100, 155431, (2019) Phys. Rev. Research 2, 043430, (2020). Phys. Rev B,103,165432,(2021). Phys Rev B, 105, L161403, (2022) Comms Phys. (2023)

Recent Publications

Phys. Rev. Applied, 10, 014022, (2018). Phys. Rev. B, 99, 075415, (2019). Phys. Rev. B (Rapid Comm), 100, 081403, (2019). Phys. Rev. Materials, 3, 124005, (2019). Phys. Rev. Research, 2, 043041, (2020) npj 2D materials., 6, 19, (2022)

- Quantum Hall hybrid systems
- Straintronics
- Topotronics
- 1-D Majorana devices
- Topological vs trivial
- Entropic signatures
- Magnetic insulator hybrids

Computational Nanoelectronics and Quantum Transport (CNQT@IITB)

We gratefully acknowledge generous funding from various agencies and institutes

Department of EE, IIT Bombay

21