# First International Quantum Communication Conclave 2023

Organized by TEC, C-DOT and TSDSI in technical collaboration with IEEE Communications Society

# **Quantum Memories and Repeaters: Challenges**



#### Presented By:

#### **Nixon Patel**

Founder/CEO Qulabz Inc Adjunct Professor Department of Artificial Intelligence & Electrical Engineering Indian Institute of Technology, Hyderabad

#### March 27, 2023







# Contents

1. About Us

A brief Introduction about our Organization, our Goals, Leadership, and our Mission

2. Quantum Repeaters

Working and Advantages

3. Quantum Repeater Challenges Active challenges in building a scalable quantum repeater network

#### 4. Quantum Memories

Classification of quantum memories and brief introduction about efficiencies and storage times

#### 5. Quantum Memory Challenges

Challenges of building different types of quantum memories as well as their advantages

#### 6. Quantum Memory @ QuLabs

Development of a field deployable quantum memory operable at room temperature being built at Qulabs



# ABOUT US

Qulabs, has the unique credential of being India's first and leading company in the emerging and disruptive field of Quantum Communications and Quantum AI. The company is founded by Mr. Nixon Patel (CEO), a visionary leader, an exemplary technocrat, and an Artificial Intelligence and Electrical Engineering adjunct professor at IIT Hyderabad.

• First private quantum optics lab setup for Quantum Communication

- First Fintech Company in India utilizing Quantum Advantage
- 12+ IPs in the area of Quantum Communication
- Signed Center of Communication MoU with IIT Hyderabad
- Research Collaboration with IIT Roorkee, IIT Kanpur & IIT Dharwad
- Signed MoU with Center For Quantum Network (CQN) with University of Arizona
- 35+ Quantum Scientists working in the innovation of Quantum communication
- 5 Cr Revenue generation using Quantum technology
- Trained 500 skilled resources in India & abroad.

LABS

• First Quantum Fintech Company in India authorised by IFSCA in GIFT city Gandhinagar.

Our vision is to provide India and the world its first Quantum Internet and as a result establish a completely secure internet and

communication system equipped with immense speed and security.



#### **One of the Top 6**

We were recognized as one of the six companies globally to watch out for in Quantum ML in 2022 by the most recognized global quantum reporting media! <u>https://lnkd.in/gFB9QS9z</u>

## **Top Quantum Start-up**

Analytics India Magazine mentioned Qulabs as a top Indian Quantum Computing start-up. <u>https://analyticsindiamag.com/8-top-quantum-</u> <u>technology-startups-in-india/</u>

## Endorsed alongside leaders like Google & Xanadu

In August 2022 we received another endorsement which puts Qulabs on the same platform with the world leaders of the likes of Google, Xanadu, Quantinuum and Zapata in Quantum AI. https://thequantuminsider.com/2022/08/23/quantumcomputer-ai-powering-computers-with-quantumbrains/



# Classical v/s Quantum Communication

**Classical Communications** 

**Quantum Communications** 

Uses classical light to encode information



Uses qubits such as single photons to encode information

Optical amplifiers are used to boost the signal due to fiber losses



No-cloning theorem prevents the use of amplifiers: entanglement distribution using quantum repeaters used to overcome fiber losses

Vulnerable to eavesdropping and interception



Principles of quantum mechanics provide enhanced security with protocols such as QKD and QSDC



Tough to support high-dimensional data transfer



High dimensional data transfer possible with qutrits and qudits using properties of photons

# **Stages And Examples of Quantum Network**

Stage 5

Clock

distributed

quantum



Tucson Test Bed Centre for Quantum communication USA

> Trusted Repeater Networks

> > Stage 1

QKD (no end-toend security)



https://con-erc.org/research/ https://www.nature.com/articles/s41586-020-03093-8

....

Prepare

Measure

Networks

Stage 2

QKD, secure

identification,

and



ment

Stage 3

DI

Quantum Network Proposed by China

https://www.qulabs.ai/



Shanghai control centre

Backbone

Trusted relay

All-pass optical

O User

Satellite

# **Background of Quantum Communication**

## **Qulabs' Quantum Network Architecture**



https://www.gulabs.ai/ A.S. Cacciapuoti, IEEE Network, vol. 34, no. 1, doi: 10.1109/MNET.001.1900092

ULABZ

# **Quantum Repeater Networks**

ABS



# **Quantum Repeater Networks**



https://www.qulabs.ai/

# **Generations of Quantum Repeaters**



Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations)

• The optimum generation of QR is

decided by the efficiency of

components and the distance of

communication

•





## **Quantum Repeater Challenges: Memory Efficiency & Storage Time**

0.7

0.8

**Memory efficiency** 

Memory Efficiency and Storage Time: Need for efficiency to support robust communication, a storage time

of the order of ms and multiplexing capabilities for faster Gbps level data transmission



|                                 | ExC        | EnC       | EnE                           |
|---------------------------------|------------|-----------|-------------------------------|
| Efficiency, $\eta_w \eta_{r0}$  | 0.30       | 0.30      | 0.60                          |
| Coherence time, $T_r$           | $120\mu s$ | $10\mu s$ | 1.5 μs                        |
| Repitition rate, R <sub>S</sub> | 1.25 GHz   | 1.2 GHz   | 1.2 GHz                       |
| <u></u>                         |            | Robustn   | ess of various DI             |
| D                               |            | type pro  | tocols with resp              |
|                                 |            | to non-u  | nit memory                    |
| Н                               |            | efficienc | y when an                     |
|                                 | F          | distribut | :u pair is<br>ad with 1-600 k |
|                                 | E          |           | ev naper)                     |
|                                 |            |           |                               |

0.9

## **Quantum Repeater Challenges: Frequency Conversion**

• Telecom Wavelength Enabled Qubits: Frequency conversion is required to interchange frequency

of qubits to enable storage in QM as well as transmission at telecom wavelengths



Frequency Conversion using PPLN waveguide with a low efficiency of 17.6 % using SFG

https://www.nature.com/articles/ncomms4376



Frequency Conversion using Four Wave Mixing with a very low efficiency of 0.1%

https://opg.optica.org/abstract.cfm?uri=QUANTUM-2022-QM2B.3

• Clock synchronization and time stamping: Need time tagging modules with picosecond precision

and highly accurate clocks for schemes like QKD





## **Quantum Repeater Challenges: Source and Detector Efficiency**

• EPS/SPS Efficiencies: Need for highly efficient, preferably deterministic single photon sources to increase

probability of entanglement generation/swapping

• Photon Detector Efficiencies: Need for high efficiency at 1330/1550 nm with low dark count and low dead time



Robustness of various protocols with respect to imperfect photon detector efficiency when an entangled pair is distributed with L=600 km https://www.thorlabs.com/newgrouppage9.cfm?objectgroup\_id=285

#### Silicon Based SPAD (Visible)



Photon Detection Efficiency vs Wavelength



InGaAs Based SPAD (NIR/IR)

Wavelength (µm)

Photon Detection Efficiency vs Wavelength Low efficiency of 35% at 1330 nm and even lower at 1550 nm

# State-of-the-Art Quantum Memories

| QM S     | ystem         | Highest<br>Efficiency | Highest<br>Storage<br>Time | Cost      | Size       | Portability |
|----------|---------------|-----------------------|----------------------------|-----------|------------|-------------|
| EIT      | Warm<br>Vapor | 17 %                  | 1.5 μs                     | Low       | Small      | High        |
|          | Cold<br>Atom  | 92 %                  | 325 μs                     | High      | Large      | Low         |
| Raman    | Warm<br>Vapor | 27 %                  | 27 µs                      | Low       | Small      | High        |
|          | Cold<br>Atom  | 42.8 %                | 5 μs                       | High      | Large      | Low         |
| AFC: Sol | id State      | 53 %                  | 0.53 s                     | Very High | Very Large | Very Low    |
| GEM      | Warm<br>Vapor | 84%                   | 14 µs                      | Low       | Small      | Medium      |
|          | Cold<br>Atom  | 73 %                  | 10 µs                      | High      | Medium     | Low         |



Trade-Off



https://www.nature.com/articles/s41566-019-0368-8

https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.18.044058



# **Atomic Vapor Quantum Memories: Advantages**

**Room Temperature** : Warm Rb vapor-based Quantum memories work at room temperature can provide a **field deployable** solution towards a scalable quantum repeater network

**Compact size**: Can be delivered in a 2U form-factor rackmount, hence field deployable

**Cost effective** when compared to cryogenic setup required for REIC based quantum memories and laser cooled memories



QM in an enclosure with standard 2U rack mount form factor



# **Atomic Vapor Quantum Memories: Challenges**

**Decoherence and Dephasing:** Mechanisms such as doppler broadening and atomic collisions

Environmental Interferences: Fluctuations in temperature, magnetic fields





Temperature v/s Optical Depth Increased OD results in increased storage time and efficiency



# Atomic Vapor Quantum Memory: Improvement



# **Cold Atom Quantum Memory (MOT)**

## Challenges:

- Large setup: Difficult to miniaturize
- Very Costly

## Advantages:

- Higher multiplexing capacity than warm vapor
- Higher storage time and efficiency, especially when used in a cavity



Experimental setup for demonstration of a multiplexed quantum memory with 225 memory cells

https://www.nature.com/articles/ncomms15359 https://www.nature.com/articles/nphoton.2016.51

https://www.qulabs.ai/





Intrinsic retrieval efficiency χ versus storage time for DLCZ storage in cavity enhanced MOT

# **Atomic Frequency Comb Based QM**

**Challenges:** 

- Large setup: Difficult to miniaturize
- Requires huge cryogenic setup to cool down the REID crystal to 3-4 K BS (R:T = 8:92)
- **Extremely Costly**
- Advantages:
- Extremely high multiplexing capacity
- Very high storage time and efficiency

Setup





# **Gradient Echo Memory**

#### Challenges:

- Moderately Large Setup
- Moderately Costly

## Advantages: High recall efficiency (84%) with microsecond storage times



Setup by Weinhold et. Al.

https://equs.org/news/efficient-ever-ready-memory



Memory recall efficiency at different storage times for single photon and coherent input states



# **Qulabs' approach for Rb based Quantum Memories**

| Our Optical Setup -<br><u>Stage 1</u> | <b>Problems to Tackle</b>                           | <u>Stage 2 - MOT</u>                              | <u>Stage 2 - GEM</u>                 |  |  |  |
|---------------------------------------|-----------------------------------------------------|---------------------------------------------------|--------------------------------------|--|--|--|
|                                       | Warm Vapor: High                                    | Trapping atoms using laser                        | Theoretical efficiency can reach     |  |  |  |
| Predicted Efficiency:<br>10%          | Dephasing and Decoherence<br>Rates                  | cooling and magnetic fields                       | 100%                                 |  |  |  |
|                                       |                                                     | Reduced interaction due to                        | The protocol eliminates              |  |  |  |
| Fidelity: 85%                         | Information loss due to collisions                  | cooling: Higher coherence t                       | ime unwanted reabsorption            |  |  |  |
| Storage Time: 1-3 μs                  |                                                     | Reduced susceptibility to                         | Experimental results confirm that    |  |  |  |
|                                       | Highly susceptible to<br>environmental fluctuations | environmental noise: Highe<br>Fidelity            | r no noise is added to stored states |  |  |  |
| 1                                     |                                                     |                                                   | Predicted Efficiency: 50%            |  |  |  |
|                                       | Result: Short Storage Time<br>and Low Efficiency    | Predicted Efficiency: 69%<br>Storage Time: 100 μs | Storage Time: 12 μs                  |  |  |  |
|                                       |                                                     | Miniatu<br>MOT by<br>Quanta                       | Cold                                 |  |  |  |
| ULABS                                 |                                                     | Magneto-Optical Traps                             | ULABZ                                |  |  |  |
| https://www.gulabs.ai/                |                                                     |                                                   |                                      |  |  |  |

# **Quantum Memory Development at Qulabs**

We have conducted the experiment in collaboration with IITR around July 2022.

- Table-top POC of Rb-based EIT : 2022 at Qulabs@IITR.
- Phenomena of EIT was demonstrated.

#### Highlights of the Experiments:

- Two external cavity diode lasers at 780 nm complemented by various optical components.
- Transparency window of 6.657 MHz.
- Slowing of light for 66.21 nanoseconds.







6.101400

EIT window

82.877600

## **Quantum Memory Development: Results**



SAS to Lock Laser at Specific Hyperfine Transition





#### Optical Switch Using AOM and RF Drivers



Spot Size Calculation Using Beam Master



# Value proposition and Market impact

## First time in India:

- Field trial of Quantum Networks for the first time in India.
- Quantum Repeaters development for long distance quantum communication.
- First Quantum Network Test-Bed in India.

## Value add:

- Today quantum devices can only be imported from USA & Europe.
- The components developed through this project will be targeted to be commercially producible in India.

## India among Global leaders:

- India will become self-reliant in Quantum communication.
- Unconditionally secure Quantum network can be developed for strategic and civil sector.
- This will attract Quantum communication market globally.
- Quantum Scientists in India.





# **THANK YOU!**





