

Al & Quantum Vertically Integrated

QpiAI: Quantum + AI

vertically integrated

- Building solutions for complex computational problems using AI & Quantum Computing technology
- Building algorithms, software, hardware, applications, & QCaaS
- Enabling enterprise quantum adoption for next-level applications
- 10 patents filed and 1 granted

Team QpiAI : Building technology for next level applications

Dr. Nagendra

Nagaraja

Ph.D. in Physics

TIFR Mumbai

Sachin Kumar

(Senior Director Al

Dr Arpit Jain (AI Practioner)

Ph.D. in Al Coventry UK

(Founder & CEO)

Dr. Amlan Mukherjee Dr. Arun Sehrawat (Senior Director Technology)

(Director Quantum Algorithms & Theory)

Computing, NUS Singapore

Ph.D. in Quantum

Dr. Maniunath RV (Senior Director Quantum Hardware)

electronics, TU Delft,

Ph.D. in Micro-

The Netherlands

Lakshya Priyadarshi (Director Quantum Algorithms & Software)

Science, AKTU

Technology) **B.Tech in Computer**

B.Tech in Control Engineering, NIT Trichy

PhD in Electronics Engineering, UPES Dehradun

- QpiAI is a part of Qpi Technology
- 40+ strong engineering team focused on technology and product building
- 10 patents filed for QpiAI; 20 patents filed, 1 granted across Qpi Technology
- 13 Ph.D.s working on algorithms, processors, and devices at the group level •
- Advisors from IISc Bangalore, HRI Allahabad, and Oxford University

QpiAl Quantum Solutions and Integrations Approach

QpiAI Quantum Solutions

QpiAI Explorer

QpiAl Opt

Quantum Optimization

Circuit

Simulation

QpiAI ML

Ouantum **Machine Learning**

QpiAl Quantum Impact across Industries

- **QpiAl's expertise on quantum technology enables** ٠ customers to accelerate on quantum adoption, discover quantum utility, and capitalize on them in the near-term.
- Fully Integrated Quantum Compute as a Service via Cloud. ٠
- Future roadmap to integrate with Quantum Data Center ٠

Services

Automotive Manufacturina

Aerospace & Defence

Ouantum **Enhanced Simulation**

Power & Grid Infrastructure

& Smart Cities

Transportation

Pharma

QpiAl Sim

QpiAl Full-Stack Quantum Computing Solution

- Algorithm Libraries
 - Quantum Applications
 - Software & Solutions
- 20 Qubit Simulator
- Control & Readout
- Qubits Access via Cloud

QpiAl India Pvt. Ltd.

QpiAI 25 Qubit Quantum Computer

- Estimated Launch date Q3 2024/Q1 2024
- Scalable to 300 Qubits.

Full-Stack Quantum Computer Architecture

Challenges : Quantum Application Layer

Digital Domain

Challenges

- Standard SDKs for Quantum Algorithm and Quantum Software developer.
- Cloud Application for Managed Jobs to run on Quantum Computer.
- Computation Workload distribution between GPUs, CPUs and Quantum Computers

Challenges : Quantum Circuit Compiler

Circuit Generator $\mathbf{J}\pi_{AI}$ Explore Automate AI / ML

Digital Domain

Challenges

- Standaradised QASM interface with High level software and Quantum Hardware ٠
- Development of Hardware aware optimised quantum circuit compiler with Qubit ٠ Mapping and routing for quantum software.
- Framework for Hybrid Quantum Classical Compilation ٠

Quantum Processor

Accurate calibration and measurement of quantum systems is essential for development of high-fidelity quantum operations with increasing qubit count.

Challenges : Cryogenic Environment

٠

RF/Analog Domain

Quantum Communication

SuperQ SNSPD System Integrated in a QKD Receiver

• Single photon detectors are essential components used to detect and measure individual photons of light that are used to encode and transmit information

Challenges : Quantum Communication

Challenges

- **Noise and signal loss in transmission**: Quantum signals can easily be disturbed or lost during transmission, leading to errors in the communication channel.
- Limited distance of transmission: The practical use of QKD system is limited to short-range communication applications.
- **Limited Detector Efficiency:** The presence of high dark counts in the detector can lead to errors in the key distribution and compromise the security of the communication channel.

Connected Quantum Computers with Secure Quantum Communication

- **Connected Quantum Computers** will be the next generation of computation technology that would requirement in many secure computing environments such as banks, defense, government and enterprises.
- The **processed information** in the Quantum computers in the two cities are transmitted over a secure quantum communication network.

Thank You! <u>www.qpiai.tech</u>