QKD and PQ: Approaching Security as an Onion

Quantum Communication Conclave New Delhi

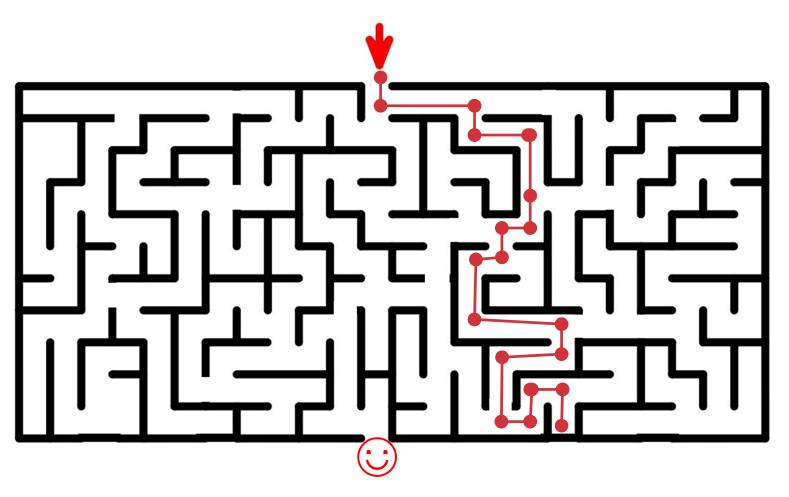
Bruno Huttner ; ID Quantique

March 2023

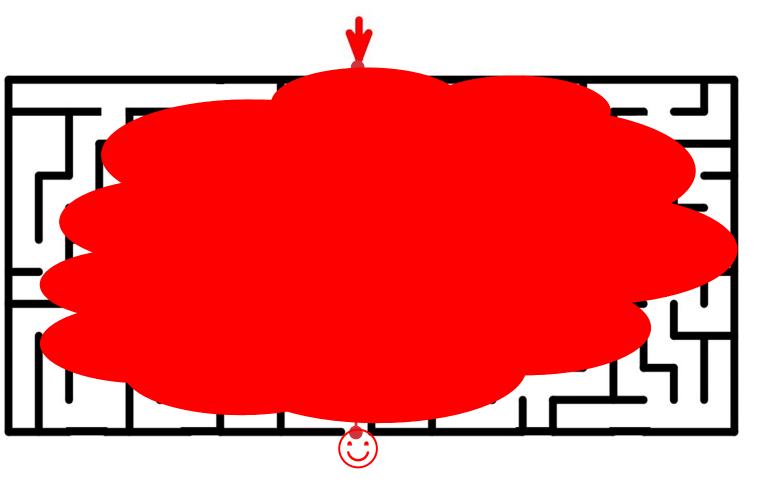
The Quantum Threat

28/03/2023

The Quantum Computer

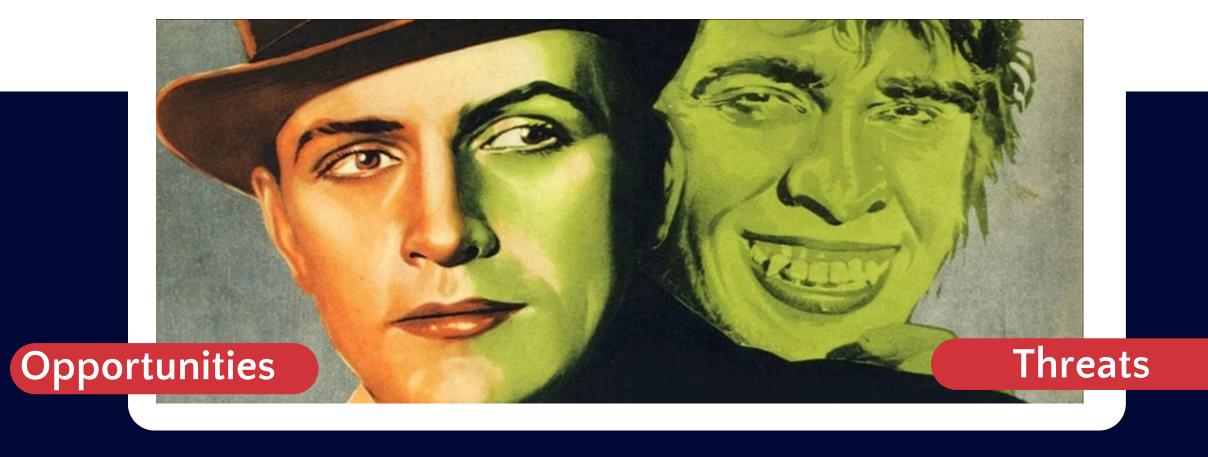

- Computation with Qubits.
- Main difference: build coherent superposition of states.
- Behaves like a massively parallel computer.
- Solves problems in much fewer steps.
- Some "intractable" (Hard) computations become feasible (Easy).

Computation as a Maze: classical case

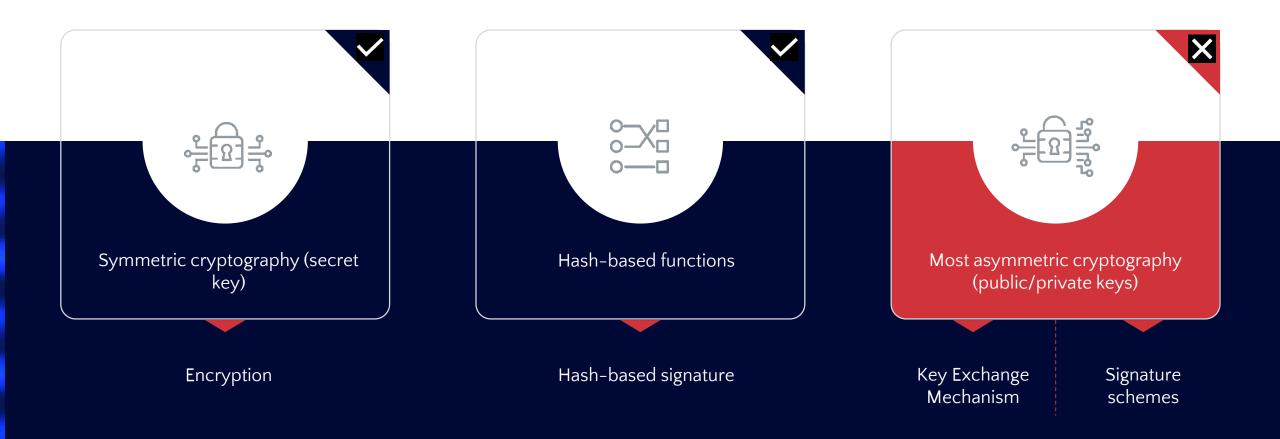


Classically: Explore one path at a time...

Computation as a Maze: quantum case



With QC: Explore many paths together; paths may interfere with one another.


The two sides of the Quantum Computer

What is at risk for crypto?

28/03/2023

A Time-bomb on security

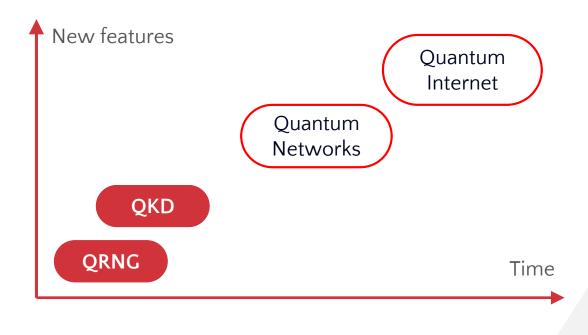
Full-scale quantum computer may be available before the end of the decade

Data encrypted with current public Key protocols already vulnerable to « harvest now, decrypt later » attacks

Possible Solutions:

Towards Quantum-Safe Security

How to address the quantum threats? **Quantum-Safe Solutions**



Classical solutions

- Post-Quantum Cryptography (PQC).
- Find classical algorithms to replace current ones
- Choose mathematical problems known/believed to be resistant to the Quantum Computer
- The NIST process is exactly doing this now...

Quantum vs. Quantum

Use quantum systems and properties against the Quantum Computer

Classical & Quantum solutions: we need both!

Different solutions for different needs...

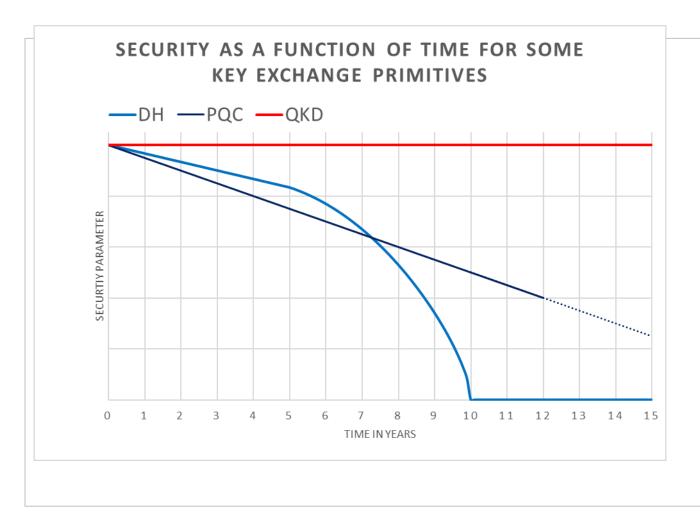
Crypto function	Solution
Randomness – Entropy generation	Quantum (QRNG)
Authentication – Signature	Maths (PQC) & Physical (PUF)
Key Exchange Mechanism	Maths (PQC) & Quantum (QKD)
Encryption	Maths

Two approaches to Quantum-Safe Cryptography

Both technologies, algorithmic-based (PQC) and physics-based (QKD) will co-exist in different use cases

	PQC	QKD		
Security	Algorithms will undergo years of study to determine reliability. However, there is no guarantee that nobody could eventually find a way to break them. In	Quantum mechanics guarantees that a quantum channel cannot be successful intercepted without Detection.	Both technologies have different features as can be seen from the table. Each will have valid use cases	
	addition, for all computational security, security decreases with time	Security does not decrease with time.	QKD will likely be the right approach for highly sensitive applications, where	
Implementation	Most implementations will use existing communication infrastructure with added SW. End-points (for example IoT) may require specific HW (higher processing and memory requirements)	Initial implementations will require specialized HW. Future aaS offers will use the new quantum infrastructure.	confidentiality needs to be guaranteed under all circumstances and for a long period of time, e.g. government, military, healthcare and financial service industries.	
Communication media	Can be used with any type of digital communications media including RF, wired networks, optical communications	Only works with optical communications; either optical fiber or free space optical	QKD comes at the disadvantage of higher costs as well as the need for a new quantum infrastructure.	
Cost	Relatively low cost since the solutions will be mostly software based	Higher initial cost because hardware and a new communications infrastructure will be required	PQC targets applications that put emphasis on mobility, cost and minimizing changes to the hardware	
Global reach	Fully compatible with current global digital technology	Can achieve global reach with Trusted Nodes today (possibly with satellites) and will be able to offer trustless	infrastructure	
	global reach after the development of quantum memories and quantum repeaters	However, PQC comes at the clear disadvantage of not providing the		
Mobile device compatibility	Fully compatible with any type of communications used by a mobile device	Limited, but could provide KaaS to mobile users with some type of recharging stations, similar to an ATM today.	long-term security guarantees as the QKD approach	
Cryptographic functions	Both authentication/signature and key exchange	Only key exchange , authentication required by other means	Page / 12	

QKD and Authentication Issues


1. QKD is a Key Exchange Mechanism (KEM)

- 2. One element in a complete cybersecurity system
- 3. Requires discussion over an **authenticated channel** (service channel)

Solutions:

- Initial pre-shared key, which will be renewed with QKD
- Good for single point-to-point operation
- ITS
- OR
 - Use of quantum-safe signatures (e.g. Hash-based signatures)
 - Use Physically Unclonable Functions
 - Good for QKD Networks

QKD vs. PQC: Time-Dependence is the Essence!

- All **computational security** comes with an expiry date
- Integrate QKD as Key Exchange Mechanism for high-valued information with long-term confidentiality requirements
- Adds one extra layer of security

Quantum-Resistant Algorithms (QRAs)

Name of method	Application	Resilience against Quantum Computer	
RSA	KEM, signature	No	
ECC	KEM, signature	No	
AES	Encryption	Widely believed	High level of
Hash-functions	Signature	Widely believed	confidence
Lattice-based CRYSTALS-KYBER	KEM	Believed	
Lattice-based CRYSTALS-DILITHIUM; FALCON	Signature	Believed	NIST Selected to be standardized
Hash-based SPHINCS+	Signature	Widely Believed	
Code-based (Classic Mc Eliece) BIKE	KEM	Believed	NIST Round 4 candidates; Under investigation
HQC; SIKE	KEM	Believed	

Risk associated with Quantum Resistant Algorithms

Classical Risks

No security proof (complexity theory).

Asymptotic security well understood – issues with choice of parameters (Matzov attack on Kyber).

Possible attacks with new classical algorithms (Rainbow; Sike)

Progress in computing power.

Quantum Risks

Shor not applicable – What about others? (see Soliloquy).

Grover: double key size for symmetric crypto

Unpredictable new vulnerabilities... A timely reminder!

"As is the norm, an unexpected problem occurred today."

The Quantum Computer will break existing Cybersecurity

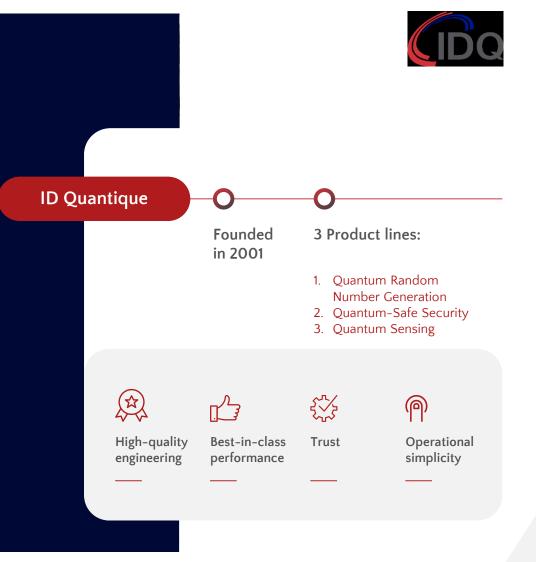
Need to start moving NOW

Summary: Key points

PQC (Algorithmic solutions) are being developed to replace existing algorithms

Quantum Solutions (QRNG, QKD, Quantum Networks) add a valuable layer for high security requirements

Both have a role to play to achieve Quantum-Safe Security


ID Quantique

Quantum. Trust enabled for the future

Q & A

bruno.huttner@idquantique.co m

www.idquantique.com

