

Quantum Technologies in Space: QRNGs

Why do we need QRNGs in Space? Quantum Conclave; New Delhi

Bruno Huttner

24/03/2023

Why randomness: The basis of Modern Cryptography

BOTH MAY BE THREATENED BY THE QUANTUM COMPUTER

Remember Kerckhoff: Randomness is only one aspect

To provide adequate security the key must be:

- Unique (known only by you)
- Truly random (unpredictable)
- Stored, distributed & managed securely

Cryptographic randomness is **private**

Most secure keys should be generated locally

Auguste Kerckhoffs (1835 – 1903)

Building an RNG: Entropy source + DRBG + Tests!

<u>One approach</u> : The NIST published and maintains a set of recommendations on how to build and certify a random bit generator (NIST 800-90A/B/C) and on how to test if it appears like a true RBG (NIST 800-22)

Entropy generation is the main issue

ID QUANTIQUE PROPRIETARY

24/03/2023

ID QUANTIQUE PROPRIETARY

Generation of Entropy: On the use of pseudo-random number generators...

Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin. For, as has been pointed out several times, there is no such thing as a random number – there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method.

John von Neumann

Entropy from Classical Systems: External Noise

- May have hidden regularities
- Could be manipulated
- Not always available (unmanned locations, IoTs...)

INVOLVES RISK: QUANTUM IS THE SOLUTION

Entropy from Classical Systems: Chaos

Many Physical-RNG's or True-RNG's (TRNG's) are based on classical chaotic systems.

• Chaos: extreme sensitivity to initial conditions, which prevents any longterm prediction of the behavior of the system

Potential issues :

- Different initial conditions may lead to non-chaotic behavior
- Influence of environment
- Requires complex live monitoring to detect any attempt to influence the process
- Speed : needs time to accumulate entropy
- New techniques (AI and ML) can be used to predict the chaotic behaviour

24/03/2023

Entropy from Quantum : IDQ's QRNG chips principle

QRNG chip in mobile phones

Phone Applications and Services use Security Algorithms

IDQ brings a new level of Quantum enhanced phone security allowing differentiated

QRNG chip in connected vehicules

Space communication requires a good entropy source

Main requirements:

- SWAP (Size, Weight and Power)
- Radiation hardened
- Harsh environment
- \Rightarrow Space-grade component

Quantis QRNG chip checks all boxes!

Integration into a Physical board

- First IDQ QRNG space project with ESA
- Developed an Engineering Model that follows European Space design rules
 - Bill of Material composed of military grade component
 - PCB space grade
 - SPI connector space grade
- Different environmental qualifications have been performed to ensure robustness in space environment
 - Radiation
 - Thermal vacuum
 - Shocks and vibration tests

QRNG in space

Type of test	Requirements	Max level applied	Results
Total Irradiation Dose (TID)	12 krad	100 krad	PASS
Single Event Effect	No Latchup	Neutron particles during 24h	PASS
Thermal Vacuum Operating Temp	0/40°C	-5/45°C	PASS
Thermal Vacuum Non-Operating Temp	-30/55°C	-40/60°C	PASS
Sine Vibration test	5-22.3 Hz / Level 12.5 mm 22.3-100 Hz / Level 25g	Same	PASS
n Plane Random Vibration test	20-80 Hz / 3 (dB/oct) 80-400 Hz / 0.5 (g ² /Hz) 400-2000 Hz / -5 (dB/oct)	Same	PASS
Shock test	100 Hz/ Level 50g 1500 Hz / Level 2000g 10000 Hz / Level 2000g	Same	PASS
The QRNG shall have a total mass loss (TML)			PASS

tests

MGSE and the 6 QRNG EM for vibration tests

Samples for TID tests

Thermal chamber with QRNG EM

Results of the project: **100 % compliant** with all requirements; QRNG chips and QRNG boards now available

24/03/2023

ID QUANTIQUE PROPRIETARY

True randomness is needed for all cryptographic applications

Even more so in the Quantum Era

Quantum Technology is the safest way to generate randomness

Space-qualified QRNGs are now available

Improve security by using them for Satellite Communications

